Notasbit

Las mejores noticias de tecnología en un sólo lugar

Publicado por: Microsiervos

Publicado en: 22/07/2017 07:08

Escrito por: [email protected] (Alvy)

Una red neuronal recursiva que descifra mensajes de la máquina Enigma con un 96% de precisión

Sam Greydanus, un físico que investiga sobre aprendizaje profundo (deep learning) y neurociencia explica cómo se puede crear una red neuronal recursiva (RNN) para descifrar mensajes cifrados por la famosa máquina Enigma que utilizaron los alemanes durante la Segunda Guerra Mundial.

Durante la Segunda Guerra Mundial el criptoanálisis de la máquina Enigma fue una auténtica proeza casi sobrehumana que requirió el trabajo de las mejores mentes de la época, como la de Alan Turing. Miles de matemáticos, criptólogos e ingenieros que resolvieron el problema y de paso crearon los que fueron los precursores de los ordenadores actuales. Todo ello está contado en Codebreakers: The Inside Story of Bletchley Park y muchos otros libros y películas. Es interesante que en el Siglo XXI esa tarea sea prácticamente un proyecto de «hacking casero» que se puede completar en un fin de semana, lo cual nos da una idea de cómo han avanzado los tiempos.

Con la llegada del aprendizaje automático todo esto está cambiando nuevamente. El criptoanálisis clásico resulta anacrónico; de hecho toda la complejidad de la máquina Enigma con sus rotores y claves secretas pasa a un segundo plano. Tal y como explica Greydanus en Decoding the Enigma with Recurrent Neural Networks simplemente se aplica la regla criptográfica de la «caja negra», según la cual da igual saber cómo funciona el algoritmo original si una simulación creada por el criptólogo puede obtener los mismos datos de salida para los mismos datos de entrada. En la práctica, de hecho, ni siquiera es …

Top noticias del 22 de Julio de 2017